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Theory of collective spin-wave modes of interacting ferromagnetic spheres

Rodrigo Ariag and D. L. Mills
Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
(Received 12 January 2004; published 29 September)2004

We formulate the theory of the collective spin wave modes of arrays of spherical particles of ferromagnetic
material, under the assumption that each sphere in the array is magnetized uniformly. In addition, the inter-
sphere interactions have their origin in the magnetic fields generated by the precessing moments, appropriate to
the case where there is no direct physical contact between the spheres. The formulation is a real space analysis,
and thus can be applied in principle to disordered arrangements of spheres. While our formulation is quite
general, and is directly applicable to the case where both exchange and dipolar interactions influence spin
motions within an individual sphere, explicit calculations are presented for the case where exchange is absent.
The numerical calculations we discuss explore the collective spin wave modes of square planar arrays of
spheres, and consider the case where the spheres are magnetized both perpendicular and parallel to the plane.
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[. INTRODUCTION In this paper, we present the theory of the collective spin
Of course, magnetically ordered materials exhibit a specvave modes of small magnetic spheres, once again for the
trum of collective excitations known as spin waves. In vari-caS€ where the coupling between the spheres has its origin in
ous forms of bulk magnetic matter, the nature of the spifn@gnetostatic fields generated by spin motions within the
waves has been elucidated both in theory and in experimegPnstituent sph(alres. Our forlmulatlor} IS veiry_ general in ng—
for many years now. More recently, interest has centered off!l€: FOr example, it is a real space formulation so it can be
magnetic nanostructures, with attention to their respons@PPlied to small clusters of spheres, as well as to the periodic
characteristics. In case of ultrathin films and magnetic supe@T@yS We examine here in the numerical calculations pre-
lattices or multilayers fabricated from ultrathin films, for Sented below. It should be remarked, however, that the study
some years now the spectrum of collective modes has bedif clusters which contain an appreciable number of spheres
studied experimentalfyBoth ferromagnetic resonance spec- Wil réquire very large matrices to be handled numerically.
troscopy (FMR) and Brillouin light scattering BLS)? pro- Periodic arrays, in which the spin waves have well defined
vide access to these modes, which of course control the rd/@ve vector, may be studied efficiently. Our method is, in the
sponse characteristics of the structures, in the linear respon mall_sense,kafmultlple sca'ﬁe_rmga] ”_‘ethof similar mf nﬁture
regime. It is the case that in these systems, considerable thi® €arlier work of Maystrest al.” in their explorations of the

oretical effort has been devoted to the study of their collecCCllECtive response of arrays of dielectric cylinders. In such
tive spin waves as well. It is fair to say that at this point the@PProaches, one assumes that the response function of an

physics of the collective excitations is well understood iniSolated entity is known, and a self-consistent multiple scat-
principle, at least for modes characterized by spatial scale§"ng methodology frames the description of the collective
long compared to the underlying lattice constants of the me0des of the array. In the magnetic case, through appropriate
dia of interest. choice of _the response fun_cthn of the |nd|V|_duaI entity one
Less clear by far is the nature of the collective spin wave®@" des<_:r|be collectlv_e excitations of pure dipolar char:_;lcter,
excitations of textured magnetic media, where the basic ur@" if desired one can incorporate both exchange and dipolar
derlying unit is not a film of infinite extent in the two direc- INteractions in the description of the response of an indi-
tions parallel to the surface, but rather an entity of lowervidual sphere. In our study of the collective excitations of
symmetry such as a thin circular disc, a nanowire, or a)anowires, both dipolar interactions and exchange were in-
sphere. The latter case, that of the collective excitations of agluded fully.
array of small magnetic spheres is of particular interest, since The extension of the basic formulation from arrays of
magnetic recording media are in fact comprised of smalkylinders to those of spheres requires a mathematical struc-
roughly spherical objects packed closely together. We haveure to be introduced. In the case of cylinders, an identity
been engaged in constructing the theory of the collectiviknown as Graf’s identit§/is central to rendering the theory
excitations of textured magnetic nanostructures. In a receromputationally accessible. One requires an equivalent for
paper we have addressed the nature of the exchange/dipokie spherical coordinate system used in three dimensions, for
spin wave spectrum of nanowires. The theory accountshe description of spherical objects. We have recently devel-
nicely for doublets observed in FMR studies of nanowires ofoped the theory of the collective excitations of arrays of di-
selected radif,and BLS studies of size quantization effects electric spheréswvhere we introduce a suitable identity simi-
on spin waves in small nanowirésWe have recently lar in structure to the Graf identity which applies in
developefithe theory of the collective spin wave excitations cylindrical coordinate systems. This identity may be used as
of nanowire arrays, where the wires are not in direct physicalell in the present instance, to describe the collective spin
contact, and thus magnetostatic coupling between these entirave modes of arrays of magnetic spheres, as we shall see.
ties lead to collective spin wave modes. We also require, for the sphere, the function which describes
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the linear response of an individual sphere to a microwaverigin of the coordinate system at the center of one selected
field of arbitrary spatial variation. This is not so simple, un- sphere, and examine its response to the combination of the
fortunately, since the fact that the sphere is magnetized lowassumed externally generated driving field and the sum of
ers its symmetry from that of an object invariant under arbi-the dipolar fields generated by the motions of the magneti-
trary spatial rotations about its center, to one invariant onlyzation in the other spheres of the array. In the vicinity of the
to rotations about the axis along which the magnetization irigin, the total driving field seen by the selected sphere has
directed. Below we show that if we are willing to ignore the form
exchange, and describe the response of the sphere within the _ N R
magnetostatic approximation, then the appropriate response h'™(f,t) = N®0(F)exp(—iQt) = - VO (F)exp(—iOt).
function may be constructed. For the case where the sphere (1)
is so small that exchange influences its response, the appro-
priate response function of the isolated sphere is not yet iince all fields are described in the magnetostatic approxi-
hand, though we have this topic under study at the time ofnation, the fields near the origin may be expressed in terms
this writing. Thus, in the present paper, in our numericalof the gradient of the magnetic scalar potentig)™(f). In
studies, we confine our attention to the pure magnetostatithe vicinity of the origin, outside the other spheres and out-
problem, wherein both interactions between spheres and tigide the sources which generate the external driving field, we
intrasphere response may be described by magnetostatiay cast the magnetic scalar potential in the form
theory. Thus, our considerations apply to ferromagnetic w
spheres whose radius exceeds the exchange lehgth (tot) (= — (tot) 1 pm, -
=(D/47MJY2. If we have in mind arrays of particles made Py (1) E n§_| Cim 1 PI(COSO)eXRiMe), @
from the 3 transition metal ferromagnets, the theory pre- ) .
sented here is applicable to spheres whose diameter is Iarg\é(nﬂere (r,0,¢) are the usual spherical coordinates and
than a few tens of nanometers. We hasten to emphasize that (Cos0) is the associated Legendre function of the first
our formulation of the coupling between the spheres is quit&ind. We find it more convenient for our purposes to work
general and is fully applicable to small spheres wherein thavith these objects, rather than the closely related spherical
response of the individual spheres is influenced by exchanggarmonics.
as well as dipolar fields generated by spin motions. Thus, The analysis can be broken down into two distinct steps.
when deve|oped, the response function of a Sing|e d|po|eThe first is to describe the response of the Sphere at the Origin
exchange coupled sphere may be inserted directly into tht® driving fields generated by the magnetic scalar potential in
formalism described here, to give us a full theory valid for EQ. (2), and the second step is to express the coefficients
particles whose diameters are comparable to or smaller tha®.. in terms of appropriate amplitudes which describe the
the exchange length. This question is under active study anotions of the magnetization of the other spheres in the ar-
present, as noted abovéRecently, we have completed a ray, and also that of the external driving field. This will gen-
computationally tractable formulation of the response funcerate a set of equations which, upon setting the amplitude
tion of an isolated sphere, with exchange inclugled. ofthe driving field to zero, will lead to an array of equations
This paper is organized as follows. In Sec. Il we presenwhose homogeneous form allows us to study the collective
the formalism that we have developed, and in Sec. Il wemodes of the array, and whose inhomogeneous form leads to
describe results of calculations we have carried out, to proa description of its microwave response whose nature, of
vide an illustration of the collective mode spectrum of par-course, is controlled by the collective mode spectrum. We
ticular cases. turn to each step in the analysis next.

A. Response of an individual sphere to an inhomogeneous
Il. THE THEORETICAL FORMULATION driving field

We consider an array of ferromagnetic spheres arranged SUPpose we (_:onsi_der a single sphere of r_adRuwith _
in some manner in space, each uniformly magnetized. I§€nter at the origin, driven by an externally applied magnetic
principle, each sphere need not be identical, but in the interf-'e|dt) whose  vector  potential is  given by
ests of simplicity we assume this to be so in what follows. | r'P(cos @)exp(img). Our interest will center on the
The magnetizations of the spheres are parallel to each othefescription of the total magnetic field outside the sphere,
and parallel to the axis we call tfeaxis. Imagine the mag- including the contribution generated by the motion of its
netizations of the spheres in the array are excited, possiblpagnetization. Quite generally this may be derived from a
by an external applied magnetic field. As the magnetizatiodnagnetic potential we write as
of a given sphere engages in its precessional motion at some
particular frequency(}, it generates a spatially nonuniform DO(F) = 3 r'PM(cosb)
dipolar field which couples to the precessing magnetization ’
of the other spheres in the array, with the result that the array

exhibits a spectrum of collective spin wave modes I+'+1
" m
+ 2 97,(Q)
|!

m .
To obtain a description of these collective modes, we pro- '+1 Pi(cos) cexplime). (3)
ceed with a logic similar to that employed in a different

physical context by the authors of Ref. 7. We locate theThe form in Eq.(3) recognizes that our problem has symme-

rI
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try lower than spherical symmetry, since the presence of the y=R(- Y21 -&)Y?sin psing, (5b)
spontaneous magnetization lowers the symmetry of the
spherical object so that the only rotational symmetry whichand
remains is that about theaxis. Thus, in language borrowed _
from quantum mechanics, the azimuthal quantum number 2= R(x/[1+ K])**¢ cos . (50
remains a good quantum number, but this is not true for the On the sphere of radiuR the coordinatet assumes the
quantum number. Hence, in general, the response functionconstant value,=([1+«]/«)'2, while # coincides with the
s7,(Q) introduced in Eq(3) will not be diagonal inl. As  polar angled of spherical coordinates. In the bispherical co-
noted in Sec. |, we shall examine the response of the sphemdinate system, the Walker equation admits separable solu-
at the origin in the magnetostatic limit, with exchange ig-tions of the formP["(¢)P"(cos n)exp(ime).
nored. In this special limit, we show below that the response When analyzing the response of the sphere to an external
function is diagonal in the indel but it is useful to keep the potential of the formr'P"(cosé) expimg) one must match
discussion general for the moment. the magnetostatic potential in the interior of the sphere to
To construct the response function of the sphere in theéhat outside. One boundary condition is that the magnetic
magnetostatic approximation, we may utilize treatmentgotential be continuous; this insures continuity of tangential
which appeared many years ago. In a classic paper, ngkercomponents of the magnetic fighterived from the gradient
analyzed the magnetostatic modes of elliptical samples. Of¢ the potential. Quite clearly, from the remarks in the pre-
course, the sphere is a special limit of the more general 9&;iq,s paragraph, a solution inside the sphere proportional to

ometry considered by him. More relevant to the presenpm s pmicos,) exn(ime) mav be matched to the forrr!
analysis is the paper by Fletcher and BélThese authors +|§’$‘§I)?2'I+(1/r'+17§)} P,’“Fz(cos(p;) exé(/imzp) applicable outsrﬁje

consider the special case of the sphere in detail, providin . . m . N .
analytic formulge for the characterisliic equations frolran Which%uggestmg that 'h_ Ed3) s, _a’ﬁn' l.e., it is diagonal in .
frequencies of the various normal modes can be determine{f?€ index. In addition, the radial component of the magnetic
They also describe the response of the sphere to an exterriafuction b must be conserved as well. After considerable
microwave field, so in fact from their paper one can con-algebra, one may show that one may conserve radial compo-
struct the response function defined in E8). We provide a nents of the magnetic induction as well with this special
brief sketch of the analysis, since this allows us to introducdorm. We shall omit details, and just quote the final form for

the various quantities which we require. the response function. We find
Outside the sphere, the total magnetic potential obeys m o
Laplace’s equation, whereas inside the sphere in the magne-  gn — 5 - (I = mv)P(&o) — &oPr (o) ©)
’ ’, -

tostatic limit it obeys an anisotropic form of Laplace’s equa- ([ + 1]+ mp)P(&) + &P(&)’ "

tion commonly referred to as the Walker equation. This can

be written as In Eq. (6), the symbolP["(¢,)’ denotes the derivative of the
2 ) ) function with respect to its argument. Notice that in the fre-
(1+ K)(_2 + (9_2>q)§5|)) + a_(ple =0. (4) quencyrangey<w< [wy(wy+1)]Y2 the quantit_y§9 is real
ey izt and positive, whereas when>[wy(wy+1)]¥2 it is pure

If Q) is the frequency of the spin motion in the sphere khd |me§;|nary ankd ('js V\gltten a&é; _t'h|§°|' funct f th
is its magnetization, we introduce the dimensionless measure S remarked above, wi € response function of the

of frequencyw:Q/4wLy|M where y is the gyromagnetic single sphere in hand, we may now turn our attention to the
ratio. Then x=wy/ (o _wS’) and we shall encountey  '€sPonse of the array of spheres. Before we address the array
: - H

= w/ (- ?). If Ho is the dc field which is applied parallel ©f SPheres, we should point out that we have yet to address a
t0 the maanetization. anth=H.—47M./3 is the internal complication not present in the earlier discussion of the di-
field theng —ﬁ-/éll M Thl _s Qn Eatsfolll) < frtla enc electric sphere$We will describe an array of ferromagnetic
eld, oy =Mi/amVs. 1hUS, In W WS, Irequency spheres, each magnetized uniformly, with magnetizations of
and magnetic fields are expressed as multiplesm¥ 4

. - all spheres parallel. The array is then placed in an external
The solutions of Laplace’s equation are well known and P P Y b

elementary, and it is possible to generate families of solu[n‘fjlgnetiC field, as in the discussion just presented. For the
i Y pOs gener . ._isolated sphere just described, then quite clearly the internal
tions to the Walker equation by expressing these in Cartesi

. . . - ¢ magnetic field is spatially uniform, and assumes the value
coordinates, then scaling the coordinate appropriately. g P Y

However, the problem of matching solutions at the boundar Hi=Ho~4mMs/3 introduced above. Now when the sphere at
' P 9 MY he origin is surrounded by magnetized spheres in its near
of the sphere then leads to a rather complex set of equatio

n\?i‘cinity the internal field will differ from this value, by vir-
Walker noted closed form solutions can be obtained by re: ’ I . iy :
sorting to bispherical coordinates within the interior. In thetue of the static dipole fields produced by the neighboring

special case of the sphere itself, Fletcher and Bell find solugpheres. This dipole field from neighbors is in fact spatially

tions that are quite simple in structure. In what follows Wenon-uniform. We will argue below that it suffices as a first
. X L ' "~ approximation to retain only the spatially uniform portion of
shall be interested in reduced frequencies wy where PP Y P y b

. . : . the dipole field from the neighbors. This will then lead us to
x<0. The transformation to bispherical coordinatgsy, ¢) employ the single sphere response function just derived, but

then takes the form the internal fieldH, is to be replaced byHy—4mM(1
x=R(- k)Y4(1 - £)¥?sin 5 cose, (5a)  +I')/3 wherel is a correction to the internal field felt by the
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sphere at the origin, from the dc field generated by its neigh(;):n!/m! (n—-m)! is the binomial coefficient. The state-

bors. We shall give explicit forms for the correction below. It ment in Eq.(9) allows us to cast the external potential in Eq.
should be noted that in discussion of granular magnetic ma®g) in the form

terials such as employed in recording media, the same ap-

o m=+
proximation is widely used? and provides excellent quanti- (ex/a _ (ext)
tative accounts of such materials. Py = g n§| Pin Rim), (10

. where
B. Response of an array of spheres to an external driving

field; the collective spin wave modes of the spherical array ©

ext) — a H I"+m

To begin, we need to set up a coordinate system. As in the (vam) B '(]”r‘)pb * _#20 2 2 ) Birm (1)(=2)
previous section, we shall focus attention on a single sphere IR m=
of radius R whose center is located at the origin of the [+m+1"-m -
coordinate system, and we shall use the standard spherical ' —m X s r-mRo())]. (1)
coordinatedr, 6, ¢) to designate points in the vicinity of this
sphere. A vector from the origin of the coordinate systemFrom the discussion in the previous section, the magnetic
to the center of spherg is Ro(j) and its direction is potential outside the sphere at the origin due to the preces-

specified by the polar and azimuthal angtgéj) and ¢q(j). sion of its magnetization has the form

A vector from the center of sphelieto a point of interest S
is f(j) and its direction is specified by the polar and azi- 0= > By (O (), (12)
muthal angles#(j) and ¢(j). It will be convenient to intro- 1'=0 m'=-1'

duce the two functionsR, ( F)-r'Pm(cosa) explimg) and
m(N)=r"*VPM(cosh) expimg) which are regular and ir-
regular at the origin respectively, and vice versa at infinity.
We imagine the array of spheres to be driven by an exter- (ext_m’ elel
nally applied magnetic field, also described within the mag- B/ (0) = 2 &%0sT ()R, (13
netostatic approximation. It is thus generated through use of =0
an external magnetic potential whose sources lie outside the The statement in Eq13) combined with Eq.(11) pro-
array of spheres under consideration. Thus, in the near vicinvides us with a self-consistent set of equations for the ampli-
ity of the origin, we may write tudes{B, (j)}. These are the formal results on which the
calculations reported below are based. One may study the
q)(hjllppb = % q)l(?rﬁpDRLm(F)' ) microwave response of the array of spheres by solving the
‘ inhomogeneous equations generated by this array, once a
For the moment, the coefficierslz{ar‘]’q’p" need not be specified form for the external driving potential is known or chosen.
in detail. ' Alternatively, one may see the frequencies of the collective
The magnetic field associated with the external potentiaspin wave modes by finding the frequencies which allow a
sets the magnetizations of all the spheres in the array inontrivial solution of the homogeneous equations formed by
motion, with the consequence that other spheres in the arragetting the external potential to zero. If one considers a pe-
generate magnetostatic fields which combine with that of théiodic array of spheres, as we do in the next section, then the
external field to drive the magnetization of the sphere at th@mplitudes may be assumed to have the Bloch f8y(j)

origin. The spatial part of the time dependent magnetic po= B, m(0) exdlk Ro(J)] where the wave vectd lies in the
tentlal in the vicinity of the origin which drlves the magne- appropriate Brllloum zone.

(ext) _ (app) was noted that when the response func&f}‘g{ﬂ) is gener-
% % {CD Runl) * %B' mDl m[f(J)]} ® ated, we must take due account of the influence of the dc

magnetic field generated by the magnetized spheres which
wherer(J)—r—Ro(J) The aim of this section is to derive a set surround the sphere at the origin. It is a straightforward ex-
of self-consistent equations for the coefficieBis,(j). Cen-  ercise, after making use of the identity in &), to generate

where, in this instance, identifyir@l(fj;“) in EQ. (11) with the
quantity &, o (©X) 6f the previous subsection

tral to our ability to do so is the identit§'4 an expression for the dc magnetic potential from which this
. field may be generated. The expansion is in the form of a
Ll F(D)] =11l F = Ro(j)] series of the functionR,,,(f)=r'P["(cos6) exp(ime). In gen-
% 1'+m eral, as remarked above, this field is spatially nonuniform,
=-1'Y X (-pmm L+ 17 —m and thus a full and complete inclusion of its influence is
| - nontrivial. However, for the periodic arrays we consider be-

I'=0m'==1"+m low, the leading term in the series describes a spatially uni-

X R e (D17 e [Ro(iD - (9)  form magnetic field which, as mentioned at the end of the
’ ’ previous subsection may be incorporated into the analysis by
The identity is valid whem <Ry(j). In Eq. (9), the quantity  a suitable redefinition of the internal field experienced by the
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sphere at the origin. We can proceed, in principle, by incororder multipole modes, characterized by rather large values
porating this uniform component of the field then calculatingof the indicesl,m in the discussion of Sec. Il A.
the spectrum of collective modes which obtains as a first We have carried out numerical studies of the spectrum of
approximation. If further refinement is desired, one can trea€ollective waves of two-dimensional square lattice of ferro-
the spatially nonuniform terms through an appropriate permagnetic spheres for two cases. In the first, the spheres are
turbation theory. Since the angular average of the spatiallll magnetized perpendicular to the plane, and in the second
nonuniform fields over solid angle is zero, it follows they the spheres aremagnetized parallel to the plane. The collec-
contribute first only in the second order of perturbationt'Ve modes then have Bloch character, with dlspersmrj rela-
theory. We confine our attention here to the mode spectrurfions characterized by the two dimensional wave veé&tor
calculated in first approximation, wherein the dc field pro-Which lies within the appropriate two-dimensional Brillouin
duced by the neighboring Spheres is approximated as Spéone. For any choice of this wave vector, one finds a Ial’ge
tially uniform. We remark, as noted earlier, the same aphumber of collective mode branches. Each reverts to a dis-
proximation is utilized widely in the literature on granular Persionless, Einstein-oscillator-like branch whose frequency
magnetic media? equals that of the isolated sphere modes described by
To calculate the correction to the internal field from the Fletcher and BeH',lln the limit that the lattice constant of the

surrounding magnetized spheres, one proceeds as f0||0W§quare.Iattice beciom.es very Iargg. The qgestion we have ex-
First, if one considers a uniformly magnetized sphere, thelored in our studies is the evolution of this collective mode
outside the sphere it is well known that the static field is thagpectrum as the lattice constant becomes comparable to the
of a point dipole of strength AM R3/3. If this sphere is diameter of the spheres themselves. We have explored sphere
placed at an arbitrary point in space, the magnetostatic pgseparationd down to 2.R, with R the radius of the indi-
tential near the origin may be calculated from the formalismvidual spheres. For smaller lattice constants, a rather large
given above, noting the only nonzero coefficidy,(j) in ~ basis set is required to avoid convergence p_roblems._ln the
Eq.(8) is that with|=1,m=0. Then when one uses E§) to results presented below, the maximum valué¢ iofcluded in
express the resulting potential in terms of coordinates reckour basis set i$=2. We have checked convergence to find
oned relative to the origin, and averages the resulting fieldh€ results for the low lying modes nicely converged with
over the sphere at the origin, the only term that survives i$his choice. . _ _

the term proportional t&;o(f). The field averaged over the ~ Nearly all of the modes examined show very little disper-
sphere at the origin has the same value as the field from aF|on, even for lattice constants as small as2.Phe reason
array of point dipoles(it is, again, rigorous to treat the S that these are derived from high order multipole modes of
spheres which generate the field as point dipotasluated the isolated sphere, which generate dynamic dipole fields
at the center of the sphere at the origin, i.e., at the origin o¥vhich fall off rapidly outside a given sphere, and which also
the coordinate system. We have carried out numerical studigd® Very weak in magnitude, since the pattern of dynamical
of the collective modes for two cases, one where a squar@@gnetization in the spheres contains nearby regions where
two-dimensional lattice of spins are magnetized parallel tgn@gnetostatic potential differs in sign. An exception is the
the plane, and one where they are magnetized perpendiculgpiform mode of the sphere which, in the Iangliage of Sec.
to the plane. The relevant local field can be expressed| A i characterized by the quantum numbérsn=1. This

in terms of two-dimensionai2D) dipole sums, which can mode disperses markedly, for the lattice constants we have
be converted to rapidly converging series using methog&Xxamined. It crosses and hybr|d|_zes with higher o_rder multi-
set forth many years ad8.For the 2D square lattice mag- pole modes which hav_e relatlvely flat coIIectlvg mode
netized in plane, the total internal field is given b branches. Thus, qu_ahtanvely speakmg., the collective que
~(4mM¢/3)(1-[R/DP\), and for the case where the 2D spectrum of the lattice of spheres consists of what one might

lattice is magnetized perpendicular to the plane we havﬁescribe as a forest of dispersionless modes formed from

for the internal fieldHo—(47MJ/3)(1+ZR/DJP\), where igh order mu!tipole_ modes of 'ghe ir_1d_ividua| sph_eres,

one has for the parametex the sum \=(472/9)[1 crossed by a dispersive branch with origin in the uniform

+2457 5% 02K, (2ml)]=4.517, andD is the distance be mode of the isolated spheres. This dispersive branch crosses
n=1<1=1 2 - ’ -

; : and hybridizes with the flat multipole branches it encounters.
tween sphere_s. We turn next to numerical calculations bas%{]the cases we have explored in our studies, we find hybrid-
on the formalism just derived. ization with a single branch,

We shall illustrate the point just made for the case where

ll. STUDIES OF THE COLLECTIVE MODES OF AN the spheres are magnetized perpendicular to the plane, a ge-
ARRAY OF FERROMAGNETIC SPHERES AND THEIR ometry of interest in the case of granular media for perpen-
MICROWAVE RESPONSE dicular recording. For this case, it should be remarked, the

spin wave collective mode spectrum breaks down into modes

In the magnetostatic description of the response of indi two different symmetry classes. This follows by noting in
vidual spheres employed here, one finds the isolated sphegéq. (11) the second term involves the associated Legendre

admits a large number of standing spin wave modes in th f
frequency regime above the frequengll;, whereH,=H,  function P,”,LI_m for the case where the angle==/2. The

-47M,/3. A careful and remarkably complete discussion offunction P["[cos(w/Z)]:PE"(O) vanishes whenever the sum
this mode spectrum can be found in the paper by Fletcher+M is odd. It follows that ifl and m are both even, the
and Bell!! Most of these modes may be described as higtcoefficientsB, ,,(0) are coupled only to coefficients for which
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both indices are either even, or both are odd integers. Simi- ¥——7——— " 7T
larly, if the indices inB, ,(0) are both odd, then also the

equation couples this amplitude only to coefficients whose
indices are both even or both odd. We refer to the modes so
described age-00 modes. If one of the two indices is even

(I or m) and the other is oddm or 1), then the coefficient oal 1
couples only to coefficients in which one index is even, or g, /
the other odd. We refer to such modessasoe modes. Upon _0‘12/

noting the identity which applies to the spherical harmonics

Y, m(60, 0)=(=)"*MY, (-6, ¢) one sees that the scalar po-
tential associated with thee.oo modes is even under reflec-

-0.06

-0.08r

=-0.141

tion in thexy plane, whereas that associated with #weoe —o1sl
modes is odd. If one excites the spheres with an externally
applied microwave field parallel to they plane, it is the —0.418 ) ) ‘ )
eeo0o modes that will be excited. 0 02 “k 08 !
We note that in our earlier discussion of the collective
modes of planar arrays of dielectric sphetese found for FIG. 1. For the two-dimensional lattice of ferromagnetic spheres

the same reason that the collective modes can be decomhagnetized perpendicular to the plane, we show the wave vector
posed into the two symmetry classes described. In the case @épendence of the dispersive branch of #eoo mode spectrum

the array of magnetic spheres, this decomposition obtaingiscussed in Sec. Ill and nearby branches, for the &d42=3.0,

only for the case where the magnetization is perpendicular taith R the radius of an individual sphere in the lattice, ahthe

the plane of the spheres. The magnetization is an axial veaeparation between the centers of the spheres. The wave vector is
tor, left unchanged by reflection in a plane perpendicular talirected along th¢11] direction of the lattice, and is expressed in
itself. However, if the magnetization is in plane, or cantedunits of y2/D. Frequency is in units ofQ—Hg)/4mM with Hy

with respect to the normal to the plane, then reflection symthe externally applied dc field.

metry in thexy plane is no longer a “good symmetry” since

the component of magnetization parallel to the plane changediscussed above. Also, we see increased dispersion, and a
sign under this reflection. In our mathematics, the breakdowwonsiderably larger hybridization gap. We remark that we
of this symmetry is expressed by the requirement thaizthe have calculated the microwave response of our lattice of
axis be chosen parallel to the magnetizations of the spherepheres by subjecting them to a long wavelength driving
in the array. Thus, if the magnetization is canted with respecfield, simulated by choosingb®P!(f) to have the form

to the normal to the plane, it is no longer the case that all obxp-Qzexp(iQ -f). If the wave vectoQ is chosen near the
the Associated Legendre functions on the right-hand side ofenter of the two-dimensional Brillouin zone, then we can
Eq. (11) are evaluated fop=/2. simulate a field whose scale of spatial variation is long com-
InFig. 1, for the cas®/R=3.0, we show the spectrum of nareq to a lattice constant. By calculating the energy ab-
collective modes of the square array of ferromagneticsorhed by such a lattice as a function of frequency, we find
spheres, in the frequency regime where one finds the dispefe only mode that has substantial oscillator strength is the
sive branch associated with the uniform mode of the widelyjg\est frequency zero wave vector mode in Figs. 1 and 2.
separated spheres. The wave vector is directed alonidthe Thys a ferromagnetic resonance study of such a material
direction in plane. At this separation, we see considerablgoy|d show only a single mode spectrum, in the limit the
dispersion, and we note that the mode hybridizes with aRpheres have radius very small compared to the microwave

Einstein-like branch associated with a higher order mumpo'@/vavelength. A similar statement will apply to Brillouin light
mode. We show also the next higher branch, for which the

dispersion is very modest at this separation. As we have -0.2
seen, in computer simulations of arrays of small particies

the calculation of hysteresis loops, for exampllee small
spheres often are approximated as structureless point dipoles.
The hybridization phenomenon displayed in Fig. 1 is a re-
flection of the fact that from the dynamic point of view, the _0_3_//
finite sphere is not equivalent to a simple point dipole with a S

single resonant frequency, but has internal structure with
higher order multipole modes which may hybridize and mix -0.351
with the collective branch formed from the uniform mode, as
illustrated in Fig. 1. In Fig. 2, we show the collective modes
in the same region of the spectrum, for the case where the
spheres are broughtcloser together, to the point wbdiR

-0.25-

=2.2. Two things are evident in this case. First, the whole ~0.45 : : : :
spectrum has been downshifted in frequency, by virtue of the 0 02 04 K 06 08 !
dipole fields set up in the rather dense lattice. These are

the fields incorporated in the correction facior\(R/D)3 FIG. 2. The same as Fig. 1, but ndv/R=2.2.
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=039 T " T " IV. CONCLUDING REMARKS
oal We have developed the formalism through which one may
analyze the collective spin wave modes of arrays of ferro-
magnetic spheres where interactions between the precessing
-0.41 . . . .
S0 magnetizations in the spheres are controlled by the dynamic
dipole fields generated by spin motions in the array. The
042 formalism is quite general, in that one can apply it to clusters
or small collections of spheres, as well as the two-
-0.43r 1 dimensional periodic lattice we have chosen to study in our
numerical analyses.
-0.44f 1 One requires the response function for the individual
spheres in the array as defined in KE8), in order to carry
-0.45 : ) : ) out explicit calculations. For the case where the internal re-
0 0.2 0.4 0.6 0.8 1 . .
K sponse of the sphere can be described by magnetostatic

theory, we have generated an explicit expression for this re-
FIG. 3. For the cas®/R=2.2, and for thg11] direction in the  sponse function, given in E¢6). The numerical calculations
two-dimensional Brillouin zone, we show an example of the disper-presented in Sec. Ill employ this form. With the current in-
sion relation of arec-oe mode. Note the modest amount of disper- terest in magnetic nanostructures in mind, it would be highly
sion present, when compared to the example in Fig. 2. desirable to have in hand an extension of the expression in
Eq. (6) to the case where exchange as well as dipole inter-
scattering studies. Finally, in Fig. 3, in the spectral regionactions influence the response of the single sphere. We re-
where the strong, dispersive branch is found, we show anark that we have devoted very considerable effort to the
dispersion curve for theeo-oe mode in this region, for task of generating such a form, and the challenge of doing so
D/R=2.2. Clearly, when this is compared with the calcula-is formidable, at least for the general case where dipole and
tions presented in Fig. 2, we see very little dispersion indeedexchange effects are comparable in magnitude.
As remarked above, we have also carried out a series of
calculatlons_ for the case where _thg spheres are magnetized in ACKNOWLEDGMENTS
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